Functions

1. Introduction
2. Advanced usages of Functions

3. Storing your Functions in Modules

Introductions

The best way to develop and maintain a large program is to construct it from smaller
pieces. This technique is called divide and conquer.

The best way to develop and maintain a large program is to construct it from smaller
pieces. This technique is called divide and conquer.

In computer programming, abstraction refers to the practice of hiding the complexity of
an algorithm's sub-steps within a function. Once a function is constructed, it can be
treated as a simple expression with defined inputs and outputs, allowing developers to
use it without needing to understand its internal details.

The best way to develop and maintain a large program is to construct it from smaller
pieces. This technique is called divide and conquer.

In computer programming, abstraction refers to the practice of hiding the complexity of
an algorithm's sub-steps within a function. Once a function is constructed, it can be
treated as a simple expression with defined inputs and outputs, allowing developers to
use it without needing to understand its internal details.

We have already seen operations like print(), str() and len(), which involve
parentheses wrapped around their arguments. These are examples of Python's built-in
functions. Programming language allows us to use a name for a series of operations that
should be performed on the given parameters.

The appearance of a function in an expression or statement is known as a function call,
or sometimes calling a function.

The appearance of a function in an expression or statement is known as a function call,
or sometimes calling a function.

e |t allows you to execute a block of codes from various locations in your program by
calling the function, rather than duplicating the code.

e |t also makes programs easier to modify. When you change a function’s code, all
calls to the function execute the updated version.

The appearance of a function in an expression or statement is known as a function call,
or sometimes calling a function.

e |t allows you to execute a block of codes from various locations in your program by
calling the function, rather than duplicating the code.

e |t also makes programs easier to modify. When you change a function’s code, all
calls to the function execute the updated version.

A function is a block of organized code that is used to perform a task. They provide better
modularity and reusability!

In [2]: display quiz(path+"funcl.json", max_width=800)

What is a function in Python?

A mathematical expression that calculates a value. Any sequence of statements.

A named sequence of statements. A statement of the form x = 5 + 4.

def Statements with Parameters

When you call the print() or len() function, you pass them values, called arguments,
by typing them between the parentheses.

When you call the print() or len() function, you pass them values, called arguments,
by typing them between the parentheses.

You can also define your own functions that accept arguments.

When you call the print() or len() function, you pass them values, called arguments,
by typing them between the parentheses.

You can also define your own functions that accept arguments.

def hello(name):
print('Hello, "', name)

hello('Alice")
hello('Bob")

Hello, Alice
Hello, Bob

When you call the print() or len() function, you pass them values, called arguments,
by typing them between the parentheses.

You can also define your own functions that accept arguments.

def hello(name):
print('Hello, "', name)

hello('Alice")
hello('Bob")

Hello, Alice
Hello, Bob

The def statement defines the hello() function. Any indented lines that follow def
hello(): make up the function's body. The hello('Alice"') line calls the function.
This function call is also known as passing the string value 'Alice’ to the function.

Parame ter

Function Definition —
def hellolname)

print(Hello, , name)

Function Call

hello(Alice)
T~

Parameter
Function Definition

def hellolname):
print(Hello, , hame)

Function Call

hello(Alice)
T~

Argument

You can view the execution of this program at https://autbor.com/hellofunc2/. The
definition of the hello() function in this program has a parameter called name . When

a function is called with arguments, the arguments are stored in the parameters.

One thing to note about parameters is that the value stored in a parameter is
forgotten when the function returns. For example, if you added print(name) after

hello('Bob') in the previous program, the program would give you a NameError
because there is no variable named name .

One thing to note about parameters is that the value stored in a parameter is
forgotten when the function returns. For example, if you added print(name) after
hello('Bob') in the previous program, the program would give you a NameError
because there is no variable named name .

print(name)

NameError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _35896\2122694447.py in

----> 1 print(name)

NameError: name 'name' is not defined

In [5]: display quiz(path+"func2.json", max_width=800)

How many lines will be output by executing this code?

Positional Arguments

When you call a function, Python must match each argument in the function call with a
parameter in the function definition. The simplest way to do this is based on the order of
the arguments provided. Values matched up this way are called positional arguments.

When you call a function, Python must match each argument in the function call with a
parameter in the function definition. The simplest way to do this is based on the order of
the arguments provided. Values matched up this way are called positional arguments.

def describe_pet(animal type, pet name):

Display information about a pet.
we can write multiple lines here!

print("\nI have a", animal type +".")
print("My", animal type + "'s name is", pet_name.title() + ".")

describe_pet('Pokemon', 'Harry')

I have a Pokemon.
My Pokemon's name is Harry.

Note that the text on the second line is a comment called a docstring (multi-line
comments introduced in Chapter 1), which describes what the function does.

Note that the text on the second line is a comment called a docstring (multi-line
comments introduced in Chapter 1), which describes what the function does.

When Python generates documentation for the functions in your programs, it looks for a
string immediately after the function's definition. These strings are usually enclosed in
triple quotes, which lets you write multiple lines. If you use the help() function, it will

also be printed out as well as the function name and parameters.

Note that the text on the second line is a comment called a docstring (multi-line
comments introduced in Chapter 1), which describes what the function does.

When Python generates documentation for the functions in your programs, it looks for a
string immediately after the function's definition. These strings are usually enclosed in
triple quotes, which lets you write multiple lines. If you use the help() function, it will
also be printed out as well as the function name and parameters.

help(describe pet)

Help on function describe pet in module _ main_ :

describe pet(animal type, pet name)
Display information about a pet.
we can write multiple lines here!

help(print)

Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=" "', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.st
dout.

sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

flush: whether to forcibly flush the stream.

help(print)
Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=" "', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

Optional keyword arguments:

file: a file-like object (stream); defaults to the current sys.st
dout.

sep: string inserted between values, default a space.

end: string appended after the last value, default a newline.

flush: whether to forcibly flush the stream.

pr\int(llgll) II9II, Sep:“*“

8*9

Return Values and return Statements

When you call the len() function and pass it an argument such as 'Hello’, the function

call evaluates to the integer value. The value that a function call evaluates to is called the
return value of the function.

When you call the len() function and pass it an argument such as 'Hello’, the function

call evaluates to the integer value. The value that a function call evaluates to is called the
return value of the function.

When creating a function using the def statement, you can specify what the return value
should be with a return statement. A return statement consists of the following:

When you call the len() function and pass it an argument such as 'Hello’, the function

call evaluates to the integer value. The value that a function call evaluates to is called the
return value of the function.

When creating a function using the def statement, you can specify what the return value
should be with a return statement. A return statement consists of the following:

e The return keyword

e The value or expression that the function should return

When an expression is used with a return statement, the return value is what this
expression evaluates to.

For example, the following program defines a function that returns a different string
depending on the number passed as an argument.

For example, the following program defines a function that returns a different string
depending on the number passed as an argument.

import random

def getAnswer(answerNumber):
if answerNumber == 1:
return 'It is certain’
elif answerNumber == 2:
return 'It is decidedly so’
elif answerNumber == 3:
return 'Yes'
elif answerNumber == 4:
return 'Reply hazy try again'
elif answerNumber == 5:
return 'Ask again later'
elif answerNumber ==
return 'Concentrate and ask again'

r = random.randint(1, 6)
fortune = getAnswer(r)

print(fortune)

Reply hazy try again

You can view the execution of this program at https://autbor.com/magic8ball/.

You can view the execution of this program at https://autbor.com/magic8ball/.

When this program starts, Python first imports the random module. Then the
getAnswer() function is defined. Because the function is being defined (and not called),
the execution skips over the code in it. Next, the random.randint() function is called
with two arguments: 1 and 6.

You can view the execution of this program at https://autbor.com/magic8ball/.

When this program starts, Python first imports the random module. Then the
getAnswer() function is defined. Because the function is being defined (and not called),
the execution skips over the code in it. Next, the random.randint() function is called
with two arguments: 1 and 6.

After calling the function, the program execution returns to the line at the bottom of the
program that was originally called getAnswer() . The returned string is assigned to a

variable named fortune, which then gets passed to a print() call and is printed to
the screen. The functions that return values are sometimes called fruitful functions.

In [11]: display quiz(path+"func3.json", max_width=800)

What is wrong with the following function definition:

: You should never use a print statement in a function
A function cannot return a number.

definition.
You should not have any statements in a function
after the return statement. Once the function gets to You must calculate the value of x+y+z before you
the return statement it will immediately stop return it.

executing the function.

The None Value

In Python, there is a value called None, which represents the absence of a value. The
None value is the only value of the NoneType data type. This can be helpful when you
need to store something that won't be confused for a real value in a variable.

In Python, there is a value called None, which represents the absence of a value. The
None value is the only value of the NoneType data type. This can be helpful when you
need to store something that won't be confused for a real value in a variable.

One place where None is used is as the return value of print() .The print() function
displays text on the screen, but it doesn't need to return anything! But since all function
calls need to evaluate to a return value, print() returns None . A function does not

return a value is called a void function.

In [12]: spam = print('Hello!")
print(spam)
type(spam)

Hello!
None

Out[12]: NoneType

spam = print('Hello!")
print(spam)
type(spam)

Hello!
None

NoneType

Behind the scenes, Python adds return None in the end of any function definition with no
return statement. Also, if you use a return statement without a value (that is, just the
return keyword by itself), then None is returned.

In [13]: display quiz(path+"func4.json", max_width=800)

What is wrong with the following function definition if we would like to receive the
summation from the function

The value None The value of x+y+z

The string 'x+y+Z’

Keyword Arguments

A keyword argument is a name-value pair you pass to a function. You directly associate
the name and the value within the argument, so when you pass the argument to the
function, there’s no confusion.

A keyword argument is a name-value pair you pass to a function. You directly associate
the name and the value within the argument, so when you pass the argument to the
function, there’s no confusion.

describe_pet(animal type='Pokemon', pet name='Harry')

I have a Pokemon.
My Pokemon's name is Harry.

A keyword argument is a name-value pair you pass to a function. You directly associate
the name and the value within the argument, so when you pass the argument to the
function, there’s no confusion.

describe_pet(animal_ type='Pokemon', pet _name='Harry")

I have a Pokemon.
My Pokemon's name is Harry.

The function describe_pet() hasn't changed. But when we call the function, we
explicitly tell Python which parameter each argument should be matched with. When
Python reads the function call, it knows to assign the argument 'Pokemon' to the
parameter animal_type and the argument 'Harry' to pet_name.

Default parameter values

When writing a function, you can define a default parameters. If an argument for a
parameter is provided in the function call, Python uses the argument value. If not, it uses
the parameter's default value. For example, if you notice that most of the calls to
describe_pet() are being used to describe dogs, you can set the default value of

animal_type to 'dog"

When writing a function, you can define a default parameters. If an argument for a
parameter is provided in the function call, Python uses the argument value. If not, it uses
the parameter's default value. For example, if you notice that most of the calls to
describe_pet() are being used to describe dogs, you can set the default value of
animal_type to 'dog"

def describe_pet(pet_name, animal type='dog'):
Display information about a pet.
Here we have default value for the animal type

print("\nI have a
print("My", animal type +

+ animal type + ".")
"'s name is " + pet name.title() + ".")

describe pet('willie')

I have a dog.
My dog's name is Willie.

Note that the order of the parameters in the function definition had to be changed.
Because the default value makes it unnecessary to specify a type of animal as an
argument, the only argument left in the function call is the pet's name.

Note that the order of the parameters in the function definition had to be changed.
Because the default value makes it unnecessary to specify a type of animal as an
argument, the only argument left in the function call is the pet's name.

Python still interprets this as a positional argument, so if the function is called with just a
pet's name, that argument will match up with the first parameter listed in the function'’s
definition.

When you use default values, any parameter with a default value needs to be listed after
all the parameters that don't have default values. This allows Python to continue
interpreting positional arguments correctly. Otherwise error occurs.

When you use default values, any parameter with a default value needs to be listed after
all the parameters that don't have default values. This allows Python to continue
interpreting positional arguments correctly. Otherwise error occurs.

def describe_pet(animal_type='dog', pet_name):
Display information about a pet.
Here we have default value for the animal type

print("\nI have a
print("My" + animal type +

+ animal type + ".")
"'s name 1is

+ pet_name.title() + ".")

describe pet('willie')

File "C:\Users\adm\AppData\Local\Temp\ipykernel 35896\574269134.py",
line 1
def describe_pet(animal_type='dog', pet_name):

SyntaxError: non-default argument follows default argument

Exercise 1: Please write a function
implementing the "guess the number” game.
The function accepts two arguments for the
maximum number of tries and the maximum
number. If the player doesn't guess the
number correctly after the maximum number
of tries, the function returns False; otherwise, if
the player guessed the number correctly
within maximum number of tries, it should
return True.

import random

def guess number(max_tries, max_number=10):
Function that allows the player to guess a number between 1 and max_numbe
If the player can guess the correct number within max_tries times, return
Otherwise, return False

Generate a random number between 1 and max_number
number =

Allow the player to guess up to max_tries times
for i in range(max_tries):
Prompt the player to guess the number
guess = int(input("Guess the number (between 1 and "+ str(max_number)

Check 1f the guess is correct

if :

print("Congratulations, you guessed the number!")
elif

print("The number is higher than your guess.")
else:

print("The number is lower than your guess.")

If the player couldn't guess the number in max_tries tries, reveal the
print("Sorry, you didn't guess the number. The number was " + str(number)

In []: # call the function to start the game with a maximum of 5 tries
game_result = guess _number(5)

Print the result of the game
if game_result:

print("You won!")
else:

print("You lost!")

Advanced usage

Local and Global Scope

Parameters and variables assigned in a called function are said to exist in that function’s
local scope. Variables assigned outside all functions are said to exist in the global scope.

Parameters and variables assigned in a called function are said to exist in that function’s
local scope. Variables assigned outside all functions are said to exist in the global scope.

A variable in a local scope is called a local variable, while a variable in the global scope is
called a global variable. A variable must be one or the other; it cannot be both local and

global.

Think of a scope as a container for variables. When a scope is destroyed, all the values
stored in the scope's variables are forgotten.

Think of a scope as a container for variables. When a scope is destroyed, all the values
stored in the scope's variables are forgotten.

There is only one global scope for a single module, and it is created when your
program begins. A local scope is created whenever a function is called. Any variables
assigned in the function exist within the function’s local scope. When the function
returns, the local scope is destroyed, and these variables are forgotten.

Think of a scope as a container for variables. When a scope is destroyed, all the values
stored in the scope's variables are forgotten.

There is only one global scope for a single module, and it is created when your
program begins. A local scope is created whenever a function is called. Any variables
assigned in the function exist within the function’s local scope. When the function
returns, the local scope is destroyed, and these variables are forgotten.

The next time you call the function, the local variables will not remember the values
stored in them from the last time it was called.

Local Variables Cannot Be Used in the Global Scope

Consider this program, which will cause an error when you run it:

Consider this program, which will cause an error when you run it:

def spam():
eggs = 31337

spam()
print(eggs)

NameError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel _35896\4207286030.py in
3
4 spam()
----> 5 print(eggs)

NameError: name 'eggs' is not defined

Consider this program, which will cause an error when you run it:

def spam():
eggs = 31337

spam()
print(eggs)

NameError Traceback (most recent call
last)
~\AppData\Local\Temp\ipykernel _35896\4207286030.py in
3
4 spam()
----> 5 print(eggs)

NameError: name 'eggs' is not defined

The error happens because the eggs variable exists only in the local scope created when
spam() is called. Once the program execution returns from spam, that local scope is
destroyed, and there is no longer a variable named eggs.

In [21]: display quiz(path+"local.json", max_width=800)

What would be the result of running the following code?

Code will give an error because there are two
different y values.

10 6

Local Scopes Cannot Use Variables in Other Local Scopes

A new local scope is created whenever a function is called, including when a function is
called from another function. Consider this program:

A new local scope is created whenever a function is called, including when a function is
called from another function. Consider this program:

eggs = -99

def spam():
eggs = 99
bacon()
print(eggs)

def bacon():
ham = 101
eggs = 0
spam()

99

A new local scope is created whenever a function is called, including when a function is
called from another function. Consider this program:

eggs = -99

def spam():
eggs = 99
bacon()
print(eggs)

def bacon():
ham = 101
eggs = 0
spam()

99

You can view the execution of this program at https://reurl.cc/qGDOxD.

Global Variables Can Be Read from a Local Scope

In [23]: def spam():
print(eggs)

eggs = 42
spam()
print(eggs)

42
42

def spam():
print(eggs)

eggs = 42
spam()
print(eggs)

42
42

You can view the execution of this program at https://autbor.com/readglobal/. Since there
Is no parameter named eggs or any code that assigns eggs a value in the spam()

function, when eggs is used in spam() , Python considers it a reference to the global
variable eggs . This is why 42 is printed when the previous program is run.

def spam():
eggs = 'spam local'
print(eggs) # prints

def bacon():

eggs = 'bacon local'
print(eggs) # prints
spam()

print(eggs) # prints

eggs = 'global’
bacon()
print(eggs) # prints

bacon local
spam local
bacon local
global

‘spam Local'

"bacon Llocal'’

'bacon Llocal'

‘"global’

If you want to modify the global variable, use the global keywords.

If you want to modify the global variable, use the global keywords.

def spam():

global eggs # If you want to modify the global eggs use global keyword

eggs = 'spam local'
print(eggs) # prints

eggs = 'global’
spam()
print(eggs)

spam local
spam local

"'spam Local'

If you want to modify the global variable, use the global keywords.

def spam():
global eggs # If you want to modify the global eggs use global keyword
eggs = 'spam local'

print(eggs) # prints 'spam local'’
eggs = 'global’
spam()
print(eggs)

spam local
spam local

You can visulaize the execution here.

In [26]: display quiz(path+"global.json", max_width=800)

What would be the result of running the following code?

Error, local variable 'x’ is referenced before
assignment.

Storing Your Functions in Modules

One advantage of functions is the way they separate blocks of code from your main
program. When you use descriptive names for your functions, your programs become
much easier to follow.

One advantage of functions is the way they separate blocks of code from your main
program. When you use descriptive names for your functions, your programs become
much easier to follow.

You can go a step further by storing your functions in a separate file called a module and
then importing that module into your main program. An import statement tells Python
to make the code in a module available in the currently running program file.

Importing a module

To start importing functions, we first need to create a module. A module is a file ending
in .py that contains the code you want to import into your program. Let's make a
module that contains the function make_pizza() .

To start importing functions, we first need to create a module. A module is a file ending
in .py that contains the code you want to import into your program. Let's make a
module that contains the function make_pizza() .

%load_ext autoreload
%autoreload 2

To start importing functions, we first need to create a module. A module is a file ending
in .py that contains the code you want to import into your program. Let's make a
module that contains the function make_pizza() .

%load_ext autoreload
%autoreload 2

%xwritefile pizza.py

def make pizza(size, toppings):
"""Summarize the pizza we are about to make."""
print("\nMaking a "+ str(size) + "-inch pizza with the following toppings
print(toppings)

Overwriting pizza.py

import pizza

pizza.make pizza(16, 'pepperoni')
pizza.make _pizza(12, 'mushrooms')

Making a 16-inch pizza with the following toppings:
pepperoni

Making a 12-inch pizza with the following toppings:
mushrooms

import pizza

pizza.make pizza(16, 'pepperoni')
pizza.make _pizza(12, 'mushrooms')

Making a 16-inch pizza with the following toppings:
pepperoni

Making a 12-inch pizza with the following toppings:
mushrooms

When Python reads this file, the line import pizza tells Python to open the file pizza.py

and copy all the functions from it into this program. You don’t actually see code being
copied between files because Python copies the code behind the scenes, just before the
program runs.

import pizza

pizza.make pizza(16, 'pepperoni')
pizza.make _pizza(12, 'mushrooms')

Making a 16-inch pizza with the following toppings:
pepperoni

Making a 12-inch pizza with the following toppings:
mushrooms

When Python reads this file, the line import pizza tells Python to open the file pizza.py

and copy all the functions from it into this program. You don’t actually see code being
copied between files because Python copies the code behind the scenes, just before the
program runs.

To call a function from an imported module, enter the name of the module you imported,
pizza, followed by the name of the function, make_pizza() , separated by a dot.

Importing Specific Functions using from

You can also import a specific function from a module.

You can also import a specific function from a module.

from pizza import make_pizza

make pizza(16, 'pepperoni’)
make pizza(12, 'mushrooms’)

Making a 16-inch pizza with the following toppings:

pepperoni

Making a 12-inch pizza with the following toppings:

mushrooms

You can also import a specific function from a module.

from pizza import make_pizza

make pizza(16, 'pepperoni’)
make pizza(12, 'mushrooms’)

Making a 16-inch pizza with the following toppings:
pepperoni

Making a 12-inch pizza with the following toppings:

mushrooms

With this syntax, you don’t need to use the dot notation when you call a function.

Importing All Functions in a Module

You can tell Python to import every function in a module by using the asterisk (*)
operator:

You can tell Python to import every function in a module by using the asterisk (*)
operator:

from pizza import *

make pizza(1l6, 'pepperoni')
make pizza(12, 'mushrooms’)

Making a 16-inch pizza with the following toppings:
pepperoni

Making a 12-inch pizza with the following toppings:
mushrooms

You can tell Python to import every function in a module by using the asterisk (*)
operator:

from pizza import *

make pizza(1l6, 'pepperoni')
make pizza(12, 'mushrooms’)

Making a 16-inch pizza with the following toppings:
pepperoni

Making a 12-inch pizza with the following toppings:
mushrooms

The asterisk in the import statement tells Python to copy every function from the

module pizza into this program file. Because every function is imported, you can call each
function by name without using the dot notation.

Using as to Give a Function an Alias

If the name of a function you're importing might conflict with an existing name in your
program, or if the function name is long, you can use a short, unique alias — an alternate
name similar to a nickname for the function.

If the name of a function you're importing might conflict with an existing name in your
program, or if the function name is long, you can use a short, unique alias — an alternate
name similar to a nickname for the function.

from pizza import make _pizza as mp

mp(16, 'pepperoni')
mp(12, 'mushrooms')

Making a 16-inch pizza with the following toppings:
pepperoni

Making a 12-inch pizza with the following toppings:
mushrooms

Using as to Give a Module an Alias

You can also provide an alias for a module name. Giving a module a short alias, like p for
pizza, allows you to call the module’s functions more quickly.

You can also provide an alias for a module name. Giving a module a short alias, like p for
pizza, allows you to call the module’s functions more quickly.

import pizza as p

p.make pizza(16, 'pepperoni')
p.make pizza(12, 'mushrooms")

Making a 16-inch pizza with the following toppings:
pepperoni

Making a 12-inch pizza with the following toppings:
mushrooms

Exercise 2: In this word game, the player is in
a land full of dragons. Some dragons are
friendly. Other dragons are hungry and eat
anyone who enters their cave. The player
approaches two caves, one with a friendly and
the other with a hungry dragon, but doesn't
know which dragon is in which cave. The
player must choose between the two. Please
completet the design of game by calling the
function from the provided game module.

%iwritefile word_game.py

import random

import time

import game # Import the custom game module

playAgain = 'yes'

while playAgain == 'yes':
Display the information of game using the displayIntro() in game module
game.displayIntro()
Read the user input and return the cave number by calling the function
caveNumber = game.chooseCave()

Check whether the cave 1is safe or not by calling the checkCave() in gam
game.checkCave(caveNumber)

print('Do you want to play again? (yes or no)')
playAgain = input()

%iwritefile word_game.py

import random

import time

import game # Import the custom game module

playAgain = 'yes'

while playAgain == 'yes':
Display the information of game using the displayIntro() in game module
game.displayIntro()

Read the user input and return the cave number by calling the function
caveNumber = game.chooseCave()

Check whether the cave 1is safe or not by calling the checkCave() in gam
game.checkCave(caveNumber)

print('Do you want to play again? (yes or no)')
playAgain = input()

%run word_game.py

In [34]: from jupytercards import display flashcards
fpath= "https://raw.githubusercontent.com/phonchi/nsysu-mathl06A/refs/heads/m
display flashcards(fpath + 'ch3.json')

divide and conquer

Next

	Introductions
	def Statements with Parameters
	Positional Arguments
	Return Values and return Statements
	The None Value
	Keyword Arguments
	Default parameter values

	Advanced usage
	Local and Global Scope
	Local Variables Cannot Be Used in the Global Scope
	Local Scopes Cannot Use Variables in Other Local Scopes
	Global Variables Can Be Read from a Local Scope

	Storing Your Functions in Modules
	Importing a module
	Importing Specific Functions using from
	Importing All Functions in a Module
	Using as to Give a Function an Alias
	Using as to Give a Module an Alias

